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Abstract. 3D Gaussian relighting is essential for interactive object edit-
ing and photorealistic rendering. Current methods depend on dense SfM
point clouds for BRDF initialization, but non-uniform distributions in
complex material regions yield incomplete geometry and compromise
light propagation in occluded areas, causing material decomposition am-
biguities and unstable shadows. We propose DSSG, a relighting frame-
work integrating depth-semantic optimization with sparse light field guid-
ance. First, our Sparse Large Variance (SLV) strategy generates Gaus-
sian distributions from random points, covering potential light interac-
tion regions, while progressive filtering suppresses material noise. Sec-
ond, we introduce depth-semantic optimization: DPT-generated depth
maps optimize geometric consistency via Pearson correlation for sta-
ble shadow tracing, while DINO-ViT features align cross-view semantics
to resolve albedo-shading ambiguity. A geometry-material alternating
strategy dynamically schedules constraints across reconstruction phases.
Our differentiable rendering framework decouples BRDF attributes from
light transport, achieving physically plausible relighting. Experiments
show improved novel view synthesis and relighting quality with reduced
shadow errors under various lighting conditions.

Keywords: 3D Gaussian Splatting · Relighting · Depth Geometric
Constraints · Semantic Consistency · Sparse Light Field Guidance

1 Introduction

3D scene reconstruction and relighting bridge computer vision and graphics to
achieve photorealistic rendering under dynamic lighting. Current approaches in-
clude polygon mesh-based methods [3] with explicit BRDF but limited by geo-
metric accuracy; NeRF-based methods [1] with high-quality synthesis but opaque
material decomposition and real-time bottlenecks; and 3D Gaussian Splatting
(3DGS) [2], which offers promising relighting with real-time capabilities through
differentiable rasterization.

Current 3DGS relighting methods [4–6] face two challenges. First, SfM de-
pendency creates geometry-material coupling: (1) Non-uniform sampling causes
spatial biases in material optimization; (2) Poor Monte Carlo efficiency accu-
mulates errors in indirect illumination; (3) Geometric errors propagate through
normals to BRDF, creating detrimental feedback loops. Second, traditional op-
timization fails to handle nonlinear error propagation, causing cross-view albedo
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ambiguities. While deep learning methods [26] introduce priors and physics-
based approaches [7] achieve high precision, they lack real-time capability. Recent
semantic methods [8] inadequately consider dynamic lighting physics, producing
shadow artifacts and implausible reflections.

We propose DSSG (Depth-Semantic driven Sparse-light-field Gaussian), lever-
aging depth and semantic information for stable geometry-material decomposi-
tion. We use monocular depth for geometric guidance, enabling accurate sur-
face capture, particularly at boundaries. DINO-ViT features establish semantic
correspondences across views, reducing BRDF ambiguities. Our SLV initializa-
tion [9] randomly distributes large-variance Gaussians covering light interaction
regions, followed by progressive filtering for adaptive convergence while main-
taining smooth material transitions.

Our contributions: 1) Depth-semantic optimization using DPT depth maps
and DINO-ViT features to resolve cross-view diffuse inconsistencies; 2) SLV-
based initialization with progressive frequency filtering for robust BRDF esti-
mation; 3) The DSSG framework achieving real-time relighting with high quality
through collaborative geometry-material-lighting optimization.

2 Related Work

2.1 Neural Rendering-based Scene Relighting

Neural rendering methods fall into two categories: NeRF-based implicit represen-
tations and explicit 3DGS approaches. NeRF variants model radiance implicitly
through MLPs, with PhySG [10] decomposing BRDF, NeRFactor [11] handling
global illumination, and Ref-NeRF [12] improving specularity. Despite advances
by NeRD [13] and InvRender [14], dense sampling prevents real-time perfor-
mance.3DGS [2] achieves efficiency through anisotropic Gaussian rasterization.
Extensions include Relightable3DGS [15] for BRDF integration, PhysGauss [16]
for radiance transfer, and GauFRe [17] for frequency decomposition. GIR [18]
and GS-IR [19] further enable real-time global illumination through indirect
lighting and incident radiance modeling.

2.2 BRDF Parameter Estimation

BRDF estimation from images remains challenging due to geometry-material-
lighting entanglement. Deep learning approaches predict parameters directly:
Zhang et al. [20] leveraged polarization cues. While efficient, these methods suf-
fer from limited generalization.Differentiable rendering offers better accuracy-
efficiency trade-offs. Bi et al. [21] jointly optimize geometry and BRDF, while
Neural-PIL [22] accelerates computation via pre-integrated lighting. Within 3DGS
frameworks, Relightable3DGS [15] achieves real-time relighting and PhysGauss [16]
enhances specularity through importance sampling.
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2.3 Depth and Semantic Information in 3D Reconstruction

Depth-semantic fusion provides complementary constraints for robust recon-
struction. Pre-trained models include depth estimators (DPT [23]) and semantic
analyzers (DINO-ViT [24]). Recent neural methods achieve dynamic fusion, with
GaussianGroup [25] incorporating semantics into 3DGS for enhanced dynamic
reconstruction.

3 Method

Figure 1 illustrates DSSG, our relightable 3D Gaussian Splatting framework,
comprising three stages: (1) SLV initialization for uniform Gaussian point cloud
generation within camera frustums; (2) depth-semantic optimization using DPT-
based depth maps and DINO-ViT features for geometric consistency and ma-
terial alignment; (3) differentiable rendering for physically realistic dynamic re-
lighting. The pipeline alternates between geometry reconstruction and material
optimization phases.

Fig. 1. Overview of the proposed DSSG framework for relightable 3D Gaussian Splat-
ting.

3.1 Sparse Light Field Guided Initialization

We introduce a random large-variance strategy for sparse 3D Gaussian initial-
ization with progressive frequency-domain filtering to ensure uniform spatial
coverage.

Random Large-Variance Sparse Light Field Initialization Building on
RAIN-GS [9], we develop a random large-variance sampling method tailored
for relightable rendering. Our approach incorporates three improvements: (1)
larger initial variances to expand Gaussian influence for light transport; (2) depth
gradient masks guiding variance decay in high-curvature regions; (3) random
uniform distributions for complex lighting effects.
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We uniformly sample N Gaussian points {Gi}Ni=1 within view frustum Ω ⊂
R3, with positions µi ∼ U(Ω) and isotropic covariance initialization. Unlike
SfM-based methods, our strategy effectively covers light-critical regions including
specular and indirect lighting areas. Sampling density ρ = N/|Ω| adapts to scene
scale.

The initial Gaussian probability distribution is:

P (x) =
1

N

N∑
i=1

N (x | µi, Σ0) (1)

This distribution provides smooth gradients for material decomposition, re-
ducing parameter oscillations common with local over-dense sampling. Gaussian
points progressively converge to surfaces through RGB loss, depth constraints,
and frequency filtering.

Progressive Frequency-Domain Filtering To prevent high-frequency noise
and material oscillations from random initialization, we employ progressive frequency-
domain filtering with time-varying low-pass filters.

The Gaussian modulation function is:

Σt+1 = F−1[F (ω, t) · F(Σt)] (2)

where F (ω, t) = exp(−∥ω∥2/2β(t)) with bandwidth β(t) = γ2t.
Using Fourier transform properties, this simplifies to:

Σt+1 = γ ·Σt (3)

Expanding yields:
Σt = γtΣ0 ⊙Md (4)

where Md is the depth gradient mask with mij = exp(−∥∇Dij∥2), and D is
the DPT-estimated depth map. This preserves details in high-curvature regions
while accelerating convergence in planar areas.

Figure 2 shows spectral analysis results. Early optimization (t < 104) focuses
on low frequencies (∥ω∥ < 0.2) for coarse material estimation, while later stages
(t > 2×104) capture high-frequency surface details(e). Filtering accelerates error
reduction by 20% and reduces final error by an order of magnitude (b). Spectral
evolution (c) and material variance decay (d) confirm improved convergence
efficiency.

Fig. 2. Spectral Analysis of Progressive Frequency Domain Filtering with SLV Initial-
ization in 3D Gaussian Splatting
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3.2 Depth-Semantic Optimization

Depth-Based Geometric Optimization Current relighting methods often
neglect local depth consistency, causing surface discontinuities that degrade
shadow quality. We propose a geometric optimization strategy enforcing global
and local depth constraints, directly coupling them with Gaussian parameter
gradients. Unlike prior variational frameworks [27] for static reconstruction, our
method targets dynamic shadow quality through Pearson correlation-based local
consistency assessment.

We first generate a normalized depth map Dgt using the DPT model [23]
and establish multi-scale constraints with the rendered Gaussian splatting depth
Drender. The global depth loss preserves overall scene structure:

Lglobal = ∥Drender −Dgt∥1 (5)

To capture high-frequency geometric details, we introduce a local depth cor-
relation loss. We partition the depth map into K × K patches (with K = 16)
and compute the Pearson correlation coefficient for each patch:

ρk =
Cov(P render

k , P gt
k )

σrenderσgt
(6)

where Cov denotes covariance and σ represents standard deviation. The local
depth loss is then:

Llocal = 1− 1

K2

K2∑
k=1

ρk (7)

Through backpropagation, depth gradients flow into the Gaussian parameter
space. For each position parameter µi, the gradient update becomes:

∂Ldepth

∂µi
= λd

(
∂Lglobal

∂µi
+ α

∂Llocal

∂µi

)
⊙Md (8)

where Md serves as a depth gradient mask that balances global and local con-
tributions. This mask amplifies gradient signals in high-curvature regions (e.g.,
object boundaries), encouraging Gaussian concentration near geometric details.

Rather than directly supervising with DPT depth, we employ it as a differ-
entiable guide, with the local correlation loss enhancing geometric consistency
across viewpoints.

Visual Feature-Based Cross-View Semantic Alignment Material de-
composition suffers from albedo ambiguity due to view-dependent surface re-
flectance observationsthe same surface exhibits varying appearance under dif-
ferent viewing angles. To address this challenge, we exploit DINO-ViT’s ro-
bust view-invariant representations [24]. By establishing material parameter con-
straints within the DINO-ViT feature space, we achieve semantic consistency
across viewpoints.
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Given a rendered image Irender and its corresponding ground truth Igt in our
multi-view setup, we extract global semantic features using DINO-ViT. Specif-
ically, we feed both images through the model and extract the [CLS] token
output from the final layer [24], yielding feature vectors frender, fgt ∈ R768. We
then formulate a semantic similarity loss:

Lsem = 1− frender · fgt

∥frender∥∥fgt∥
(9)

This loss encourages consistent feature space representations across view-
points, guiding the model toward view-invariant material parameters.

For enhanced local material consistency, we implement a spatial attention-
guided pooling strategy. From ViT’s final attention map A ∈ RH×W , we identify
the top-k salient regions {Ri}ki=1 and compute their feature contrast loss:

Lpatch =

k∑
i=1

(
1− cos

(
g(Rrender

i ), g(Rgt
i )

))
(10)

where g(·) performs region-wise average pooling and cos computes cosine simi-
larity.

Semantic gradients propagate to the albedo parameter space via differentiable
rendering:

∂Lsem

∂ρi
= λs

(
∂Lsem

∂ρi
+ β

∂Lpatch

∂ρi

)
⊙ Smask (11)

where Smask = σ(∥∇xA∥) represents an attention gradient-based spatial mask,
σ is the sigmoid function, and β = 0.5 balances global and local contributions.
This mask prioritizes updates in semantically salient regions such as material
boundaries.

We fuse the semantic mask Smask with the depth mask Md using a gating
mechanism:

G = σ(Wg[Smask∥Md]) (12)

where Wg is a learnable weight matrix and ∥ denotes concatenation. The final
gradient update combines both constraints:

∂Ltotal

∂θ
= G⊙ ∂Lsem

∂θ
+ (1−G)⊙ ∂Ldepth

∂θ
(13)

This adaptive fusion allows material and geometric constraints to be weighted
according to local feature importance.

3.3 Differentiable Light Field Rendering

To enable photorealistic dynamic relighting, we develop DSSG’s differentiable
light field rendering framework, inspired by R3DG [15]. Our approach decouples
material properties from light transport, enabling efficient real-time ray tracing.
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BRDF Parameter Decomposition Building on R3DG’s modified Disney
BRDF model, we establish a direct coupling between roughness parameters and
Gaussian geometric properties. Each Gaussian maintains material parameters
{ρi, αi,mi}, with roughness αi derived from covariance eigenvalues:

αi =

√
λmax(Σi)

λmin(Σi)
· γ(t) (14)

where γ(t) = exp(−0.01t/T ) introduces temporal decay, complementing the
frequency-domain filtering from Section 2.1.2. This formulation exploits the nat-
ural relationship between the eigenvalue ratio λmax/λmin and surface anisotropy,
eliminating additional parameters while improving spatial coherence.

We reformulate the specular term as:

fs =
D(h)F (v, h)G

4(n · l)(n · v)
· softplus(mi) (15)

where softplus(x) = ln(1+ex) ensures non-negative metalness values, addressing
gradient instabilities in the original formulation. Within our deferred rendering
pipeline, we define surface normals as the eigenvector associated with the mini-
mum eigenvalue of each Gaussian’s covariance matrix.

Light Transport Modeling We decompose incident illumination into direct
environment lighting Lenv and indirect local lighting Lind:

Li(ωi) = V (ωi)Lenv(ωi) + Lind(ωi) (16)

The visibility term V (ωi) is computed via ray tracing, while indirect illu-
mination employs third-order spherical harmonics. Using Fibonacci sampling to
generate Ns = 64 incident directions, we evaluate outgoing radiance through
Monte Carlo integration:

Lo =

Ns∑
k=1

fr(ωk)Li(ωk)(n · ωk)∆ωk (17)

3.4 Loss Functions

Our optimization employs a two-stage strategy: geometry reconstruction fol-
lowed by material decomposition. We design a comprehensive loss framework
that combines reconstruction objectives, regularization terms, and stage-specific
constraints, modulated by a dynamic weighting schedule (detailed in Section
3.5).
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Reconstruction and Regularization Losses The core reconstruction losses
ensure fidelity between rendered and reference images across both optimization
stages:

Lrgb = ∥Irender − Igt∥1, Lssim = 1− SSIM(Irender, Igt) (18)

where Lrgb captures pixel-wise differences and Lssim evaluates structural simi-
larity, maintaining consistency at both pixel and perceptual levels.

To mitigate material-lighting ambiguities and ensure physical plausibility, we
incorporate regularization terms:

Llight =
∑

c∈{R,G,B}

(
Lc

env − 1

3

∑
Lc

env

)2

(19)

Lsmooth = ∥∇ρ∥e−∥∇D∥ + ∥∇α∥e−∥∇C∥ (20)

where Llight encourages achromatic environment lighting to reduce color bleed-
ing, and Lsmooth adaptively weights material gradients based on depth and color
discontinuities from our depth-semantic optimization (Section 2.2).

Stage-Specific Constraints For geometry reconstruction, we enforce depth
consistency and shape regularity:

Ldepth = ∥Drender −Dgt∥1 +

1− 1

K2

K2∑
k=1

ρk

 (21)

Lvar =

N∑
i=1

∥∥∥∥log(λmax(Σi)

λmin(Σi)

)∥∥∥∥
2

(22)

where Ldepth combines global depth fidelity with local correlation (via Pearson
coefficients ρk), guided by a time-varying weight λd(t) that decreases during op-
timization. Lvar regularizes Gaussian covariance matrices to prevent degenerate
shapes.

During material decomposition, we apply semantic consistency and shadow
fidelity constraints:

Lsemantic = 1− frender · fgt

∥frender∥∥fgt∥︸ ︷︷ ︸
Lsem

+β

k∑
i=1

(
1− cos

(
g(Rrender

i ), g(Rgt
i )

))
︸ ︷︷ ︸

Lpatch

(23)

Lphys = ∥∇m∥22 + ∥α⊙m∥1, Lshadow = ∥M render
shadow −Mgt

shadow∥1 (24)

where Lsemantic enforces view consistency in DINO-ViT feature space through
global (Lsem) and local (Lpatch) similarity. Lphys promotes spatial smoothness
and energy conservation for BRDF parameters m. Lshadow ensures accurate light
occlusion modeling through shadow map comparison.
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Optimization Objectives We define separate objectives for each stage that
combine the above components:

Geometry reconstruction:

Lgeo = λ1Lrgb + λssimLssim + λdLdepth + λvarLvar (25)

Material decomposition:

Lbrdf = λ1Lrgb+λssimLssim+λsLsemantic+λshadowLshadow+λlightLlight+λsmoothLsmooth
(26)

The weighting coefficients λ are dynamically scheduled to smoothly transition
from geometric to material optimization, enabling progressive refinement from
coarse structure to fine-grained material properties.

3.5 Geometry-Material Alternating Optimization

Relightable reconstruction faces inherent conflicts: geometric reconstruction re-
quires high point density while material decomposition demands spatial smooth-
ness, with material gradients typically exceeding geometric gradients by an or-
der of magnitude. We propose alternating optimization with dynamic constraint
weighting to decouple these conflicting objectives.

We alternate between geometry reconstruction (t mod T < Tgeo) and mate-
rial decomposition phases within period T . Dynamic weighting ensures smooth
transitions:

λd(t) = λ0
d exp(−αt), λs(t) = λ0

s[1− exp(−β(t− tdelay))] (27)

where exponentially decaying depth weights provide strong initial geometric
guidance, and delayed semantic constraints (activating after tdelay) prevent pre-
mature material regularization.

Geometry phases optimize positions µi and covariances Σi, while material
phases refine albedo ρi, roughness αi, and metalness mi. We progressively in-
crease physical regularization weights and employ complexity-adaptive ray sam-
pling to maintain computational efficiency throughout optimization.

4 Experiments

4.1 Experimental Setup

We evaluate on NeRFSynthetic and Synthetic4Relight datasets with parameters:
{λd = 0.01, λs = 0.0001, γ = 0.995} from Sections 2.1-2.2.

Geometry optimization: 30,000 iterations with Tn = 2 × 10−9. Loss weights
(Eq. 25): {λ1 = 0.8, λssim = 0.2, λd = 0.01, λvar = 0.01}.BRDF optimization:
10,000 iterations, 64 rays/Gaussian. Loss weights (Eq. 26): {λ1 = 0.8, λssim =
0.2, λs = 0.0001, λshadow = 0.01}.

Adam optimizer with cosine scheduling, 10% warm-up. Dynamic weighting:
λd(t) = 0.01e−5t/40000 (exponential decay), λs(t) = 0.0001[1−e−3(t−15000)/20000]
(sigmoid growth). Learning rate: 10−3 → 10−4.
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4.2 Performance on View Synthesis

Table 1 presents view synthesis evaluation on the NeRF Synthetic dataset. DSSG
achieves comparable rendering quality to view synthesis-specific methods while
enabling real-time relighting.

Table 1. Quantitative comparison of view synthesis on NeRFSynthetic dataset

Non-relightable methods Relightable methods
Method Geom. PSNR↑ SSIM↑ LPIPS↓ Method Geom. PSNR↑ SSIM↑ LPIPS↓

NPBG point 28.10 0.923 0.077 PhysSG neural 18.91 0.847 0.182
NPBG++ point 28.12 0.928 0.076 NeLF++ neural 26.37 0.911 0.091
FreqPCR point 31.24 0.950 0.049 Nvdiffrec mesh 29.05 0.939 0.081
3DGS point 33.88 0.970 0.031 R3DG point 31.22 0.959 0.039

DSSG (Ours) point 31.67 0.961 0.040

Among relightable methods, DSSG achieves the highest PSNR and SSIM ,
demonstrating the effectiveness of our depth-semantic constraints. Compared to
non-relightable 3DGS [2], DSSG shows only marginal performance gaps while
enabling real-time relightinga capability 3DGS lacks entirely.

Figure 3 (left) shows qualitative comparisons. DSSG captures finer details
in the chair’s velvet texture and microphone’s metallic mesh (red box), with
better-preserved wire gaps and specular reflections than R3DG.

Fig. 3. Qualitative comparison of view synthesis on NeRFSynthetic dataset (left). Vi-
sual comparison of material decomposition on Synthetic4Relight dataset (right).

4.3 Performance on Relighting

Table 2 presents relighting results on Synthetic4Relight. DSSG achieves 37.05
dB PSNR (view synthesis) and 31.42 dB (relighting), with superior albedo re-
construction and competitive roughness estimation. The depth-semantic dual
constraints and SLV initialization improve point distribution in shadowed re-
gions, enhancing both quantitative metrics and perceptual quality (Figure 3)
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Table 2. Quantitative evaluation on Synthetic4Relight dataset

Method View Synthesis Relighting Albedo Roughness

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ MSE↓

NerFactor 22.80 0.916 0.150 21.54 0.875 0.171 19.49 0.864 0.206 —
Nvdiffrec-MC 34.29 0.967 0.068 24.22 0.943 0.078 29.61 0.945 0.075 0.009
InvRender 30.74 0.953 0.086 28.67 0.950 0.091 28.28 0.935 0.072 0.008
TensorIR 35.80 0.978 0.049 29.69 0.951 0.079 30.58 0.946 0.065 0.015
R3DG 36.80 0.982 0.028 31.00 0.964 0.050 28.31 0.951 0.058 0.013
DSSG (Ours) 37.05 0.983 0.030 31.42 0.968 0.048 30.15 0.955 0.054 0.010

Figure 4 demonstrates DSSG’s robustness: (top) accurate rendering under
five environmental illuminations; (bottom) real-world applicability with Lego
model in custom panoramic environments.

Fig. 4. DSSG relighting results under diverse environmental illumination con-
ditions(top)Scene composition and dynamic relighting results produced by
DSSG(bottom)

Additional TNT dataset evaluation (Figure 5) confirms DSSG’s superior ge-
ometric accuracy, validating its effectiveness on real-world data.

Fig. 5. Comparison of relighting performance on TNT dataset
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4.4 Ablation Study

Table 3 validates our design choices. Semantic constraints are crucial for material
decomposition, depth constraints improve geometric quality, and SLV initializa-
tion enables superior light transport modeling with faster convergence compared
to uniform distributions.

Table 3. Ablation study with light transport analysis

Method Variant View Synthesis Relighting Material Decomposition Geometry Quality Light Transport Conv.

PSNR SSIM LPIPS PSNR SSIM LPIPS Albedo PSNR Albedo SSIM Rough. MSE Normal Cons. Normal MAE Indirect MAE Specular MAE Shadow Acc. Iter.

DSSG (Full) 37.05 0.983 0.030 31.42 0.968 0.048 30.15 0.955 0.010 0.912 0.062 0.086 0.102 0.891 18k

Core Component Ablation
w/o Semantic 36.84 0.980 0.035 30.87 0.958 0.056 28.91 0.934 0.014 0.908 0.068 0.095 0.118 0.872 22k
w/o Depth 36.51 0.977 0.038 30.45 0.961 0.053 29.38 0.946 0.012 0.867 0.085 0.104 0.125 0.856 25k
w/o SLV 36.92 0.982 0.032 30.98 0.965 0.050 29.87 0.952 0.011 0.873 0.079 0.112 0.134 0.845 24k
w/o Prog. Filter 36.88 0.981 0.033 31.15 0.966 0.051 29.95 0.953 0.012 0.896 0.071 0.092 0.108 0.878 20k

Initialization Parameter Study
Small Var. (0.01) 36.42 0.978 0.037 30.23 0.957 0.058 29.12 0.943 0.015 0.876 0.095 0.142 0.168 0.712 28k
Medium Var. (0.05) 36.78 0.981 0.033 30.95 0.963 0.051 29.86 0.951 0.012 0.895 0.078 0.108 0.134 0.823 22k
Large Var. (0.1) 37.05 0.983 0.030 31.42 0.968 0.048 30.15 0.955 0.010 0.912 0.062 0.086 0.102 0.891 18k

Spatial Distribution Strategy
Random Uniform 36.03 0.974 0.042 29.15 0.945 0.069 27.62 0.921 0.018 0.841 0.115 0.156 0.182 0.698 35k
Grid Uniform 36.48 0.979 0.036 30.34 0.959 0.055 29.23 0.945 0.013 0.882 0.088 0.124 0.145 0.812 26k
SLV (Ours) 37.05 0.983 0.030 31.42 0.968 0.048 30.15 0.955 0.010 0.912 0.062 0.086 0.102 0.891 18k

Figure 6 visualizes component contributions. Without semantic constraints
(c), material quality deteriorates. Depth constraints reduce geometric uncer-
tainty at object boundaries (d-f). SLV captures finer surface details with smoother
transitions (g-h).

Fig. 6. Visual ablation study of DSSG components

Figure 7 shows SLV achieves 31 dB PSNR in 18k iterations28% faster than
SfM initialization. The method maintains smooth convergence with 0.91 normal
consistency and rapid variance reduction to 0.01.
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Fig. 7. Convergence analysis of different initialization strategies

5 Conclusion

We presented a depth-semantic-driven sparse light field-guided 3D Gaussian
modeling method for high-quality relightable scene reconstruction. By extend-
ing traditional 3D Gaussian Splatting to a relightable representation, our SLV
initialization strategy eliminates dependency on SfM point clouds while ensur-
ing uniform spatial coverage. To address material decomposition ambiguities, we
developed a dual-constraint mechanism that fuses DPT depth estimation with
DINO-ViT semantic features, enforcing cross-view material consistency. Experi-
mental results demonstrate that our method achieves accurate material decom-
position and superior performance in both view synthesis and scene relighting
tasks. The effectiveness of our approach is validated through improved mate-
rial quality and compelling visual results under diverse environmental lighting
conditions.
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